
JOURNAL OF COMPUTATIONAL PHYSICS 61, 138-153 (1985)

Molecular Dynamics on Vector Computers*

FRANCIS SULLIVAN

Center for Applied Mathernatlcs,
National Bureau of Standards, Washington, D.C.

RAYMOND D. MOUNTAIN

Center for Chemical Physics,
National Bureau of Standards, Washington, D.C.

AND

JULIE O’CONNELL+

TRW, Inc., Cleveland, Ohio

Received September 12, 1984; revised January 8, 1985

An algorithm has been developed for computer simulation of molecular dynamics. The
algorithm, called the “method of lights,” is based on sorting and on reformulating the way in
which neighbor hsts are constructed. It uses data structures compatible with either traditional
scalar computer architecture or specialized vector statements which perform computations in
parallel. The algorithm has been implemented on the CYBER 205’ computer. Tests indicate
that the method reduces running time over standard methods in scalar form, and that “vec-
torization” produces an order-of-magnitude decrease m execution time. 0 1985 Academic Press,

IX

1. INTRODUCTION

Computer simulation of molecular dynamics is by now a well-established and
important technique in condensed matter physics and chemistry. Simply stated, it
consists in solving Newton’s equations for a collection of atoms or molecules which
are assumed to interact according to some postulated (usually pair-wise) force law.
The solution of these equations is then used to determine thermodynamic and
transport properties of a dense system, such as a liquid. Greater speed and wider

* Certain commercial equipment, instruments, or materials are identified in this paper in order to
adequately specify the computational procedure. Such identification does not imply recommendation or
endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment are
necessarily the best available for the purpose.

t Present address: The Catholic University of America, Washington, D.C.

138
0021-9991/85 $3.00
Copyright 0 1985 by Academic Press, Inc.
All rights of reproduction m any form reserved.

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 139

availability of computers has led to increased use of simulation techniques, making
possible recent rapid advances in the understanding of the liquid state [IO].

For very large simulations, vector-processing “supercomputers” offer great poten-
tial for reducing run time. In order to make effective use of these machines,
algorithms must be designed to be “vectorizable,” that is, compatible with
language-based and machine-based structures for parallel processing. A new
algorithm based on sorting has been developed. The algorithm, called the “method
of lights,” can be implemented with either scalar or vector arithmetic; it is more
efficient than existing techniques even on scalar machines. Tests indicate that on
vector machines the method greatly reduces running time and thus helps to make
very large scale simulations a practical possibility.

Determination of the forces acting between the particles as functions of the par-
ticle positions is a time-consuming calculation which must be performed at each
time step in a simulation. Every particle interacts with every other so that, in prin-
ciple, for IZ particles there are, O(n’) forces which need to be computed at each time
step. In most cases, however, the force falls off rapidly as a function of distance, and
a particle can be assumed to interact only with its nearby neighbors. Typically, a
neighbor list is constructed and periodically updated as the simulation progress
[111. While impressive reductions in execution time have resulted using the
neighbor list method, the algorithms have not been designed to take advantage of
the architecture of vector machines. We have concentrated on reformulating the
structure of the neighbor list and the procedures for updating it.

In the following section we give a general description of the algorithm and some
details concerning implementation. This information is general and applicable to
any computer. In Section 3 we take up the “vector” version of the algorithm. The
principal task is to vectorize the method for generating the neighbor list described
in Section 2; however, we also modify the sorting method and the computation of
particle accelerations used in the integration routine. Tirning data are given for the
vector version. In Section 4 we comment briefly on some other possibilities for
neighbor list algorithms. The remainder of the present section presents a general
description of the model and the methodology for calculating interactions between
particles.

The model consists of an ensemble of interacting molecules in a 2- or 3-dimen-
sional “box.” Periodic boundary conditions are imposed so that in effect all of space
is filled with identical boxes. This periodicity must be taken into account in deter-
mining neighbors, as is illustrated for two dimensions in Fig. 1, Particles near, for
example, the upper right corner of the box are neighbors of those in the lower left
corner.

Interactions between particles are determined by a potential law. We use a soft
sphere potential, so that the (purely repelling) potential averages for the ith
molecule are given by

V(r,)=C z- (>
12

,I %

140 SULLIVAN, MOUNTAIN, AND O’CONNELL

FIG. 1. Periodic boundary conditions.

Here j ranges over all particles different from i, R, is the distance from particle i to
particle j and IJ is the unit of length. The acceleration of molecule i at position ri is,
thus,

a,(r,) = -W(r,)/m.

Here m, the molecular mass, can be taken as equal to 1. The method of integration
we use is that recommended by Beeman [2].

In the simulations since length is in units of G and energy is in units of E, the unit
of time is

z = (ma2/e)1’2.

In the sum for the potential of the ith molecule, terms for which RJcr > R = 1.5
are set to zero and the neighbors of a given particle are just those particles with dis-
tance less than or equal to R. In computing the force on particle i, we consider
those particles, j with R, < R + 6. Because of the extra thickness 6 and the fact that
the step size is sufficiently small so that particles do not move beyond the 6 between
updates, the neighbor information needs to be updated only once every few time
steps and saved in the neighbor list.

In software written for conventional scalar machines, it is common to save
storage by structuring this list as a l-dimensional array in which sets of neighbors
for each particle are separated by zeroes. This provides efficient utilization of
storage, since pairs of neighbors need to be stored only once. However, this device
is not efficient for parallel processing. Hence for vectorization we make the list a 2-
dimensional array. More detail is given in Section 3.

2. THE METHOD OF LIGHTS

The procedure for determining neighbors is based on sorting the particles
independently according to values of each coordinate. Information from the

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 141

separate sorted orders can be used to obtain X, Y, and Z ranges which are then
combined to generate a cubical box neighborhood for each particle which includes
the sphere of radius of R + 6.

For simplicity, we limit discussion to the 2-dimensional case and all lengths are
scaled by the length of the side of the box. Implementation in the model for three
dimensions is based on the obvious extensions. (See Fig. 2.)

Because all of the forces were set to zero for which R,/G > R, the neighbors
included in the box but in the sphere have no effect on the acceleration. The first
step is to sort the particles according to X- coordinate values, and independently by
Y values. While the sorting can be done by a conventional O(n log n) method,
improvements are achievable for both scalar and vector algorithms. The neighbor
list is retained for several time steps before updating it so that on all steps after the
first the lists are already approximately ordered before the sort is performed. To
take advantage of this approximate ordering we use the “Smoothsort” algorithm
due to Dijkstra [S]. This algorithm is O(n log n) for a completely disordered list
but O(n) for an ordered list, with a smooth transition from one to the other. Our
program for scalar machines incorporates Dijkstra’s method. In the vector case,
however, we use a method similar to the non-contingent “Diamondsort” [4].
Although Diamondsort does not take advantage of the existing ordering, it is
extremely efficient on vector machines [S].

A square neighborhood for each particle is described by pairs of pointers which
indicate ranges in the lists of sorted particles. We are given lists of coordinates Xi,
Y,, 1< i 6 N. In sorting the X and Y coordinates we need to retain the original
indices as well as generate the sorted ones; hence, we define auxiliary arrays LQCX
and LQCY and use indirect addressing. These arrays contain the original indices in
sorted order so that

and

c YLOCY,~ < yLocY*~...I < LOCYJ

FIG. 2. Square neighborhood.

142 SULLIVAN, MOUNTAIN, AND O’CONNELL

The pointers which describe the square neighborhood cell are generated as follows:
given a pointer into the array of increasing X values only two more pointers, JB
and JE, are required to indicate which particles have X coordinates within R + 6 of
particle LOCX,. These pointers are saved in JBS,,,, and JESLocx, respectively.
Then i is incremented and JB and JE are incremented until ranges for LOCX, + 1 are
found. (See Fig. 3.)

The periodic boundary conditions are treated by adding or subtracting 1.0 in the
calculation of distance. For example, when the upper index JE reaches N, it is reset
to 1 and 1.0 is added to XLoCXIE, as shown in Fig. 4.

The algorithm for updating and saving of pointers is essentially a “DO WHILE”
loop. Advancing the JE pointer, for example, is done as follows:

ADDX = 0.0
(for 1 <K<NJ

SX(K) =X(LOCX(K))
.

DO 50 1=2, N
{Initialize JE and JB for particle LOCX(l) I,

30 IF((SX(JE) + ADDX) - SX(1))GT.R + 6) GO TO 40
JE=JE+l
IF (JE.GT.N) THEN

JE=l
ADDX = 1.0

END IF
GO TO 30

4. JBs! (Locx(I)) p$ar code for JB >

JES(LOCX(1)) = JE
50 CONTINUE

1
- YLOCY KE

- YLOCYKB

t t

XLOCXJB XLOCXJE

FIG. 3. X and Y ranges.

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 143

FIG. 4. Periodic boundary In X.

Pointers KB and KE for the Y-ordered list are generated similarly. Thus, the cell
associated with particle i consists of the list of all particles j such that

x LOCXJBS, G x, G XLOCXIES

and simultaneously,

with appropriate modifications for the periodic boundary conditions. This list, in
fact, is the intersection of the sets of indices associated with the X and Y neighbors
and its computation can be facilitated by using an additional array RGY of indirect
addresses. For each j, RGY, is the rank position in the Y-sorted order at which j
appears, so that

RGY LOCY, = LOWGY, =.J

This formulation provides a simple method for generating RGY. It is helpful to
think of RGY as pointing from the array YJ into the sorted order and of LOCY as
pointing from the sorted order back to Y,.

Using array RGY, the neighbors of particle i are just the LOCX of those js
satisfying

JBS, <j < JES,

and simultaneously

KBS, < RGYLocx, 6 KES,.

(Again, the obvious modifications must be made in order to handle the periodic
boundary conditions.)

The theoretical complexity of this method depends mostly on how R, the
radius of interaction, varies as a function of n. For the scalar case the sorting time is
between O(n) and O(n log n). Determining the arrays JBS, JES, KBS, and KES is
O(n). As we have seen, filling the neighbor list requires computing, for each i, the
intersection of the sets of indices of X and Y neighbors. This time is proportional to
the size of these sets, which in turn is proportional to nR. Thus, the asymptotic
complexity should look like O(n*R). In general, since the number of particles per
unit area or volume is approximately constant, the average number of neighbors

144 SULLIVAN, MOUNTAIN, AND O'CONNELL

per particle is constant, i.e., nR2 is constant. Hence, for a 2-dimensional problem,
O(n2R) is between O(n) and O(n3j2). In three dimensions nR3 is the constant and
n2R grows like n513.

3. VECTORIZATION OF THE METHOD OF LIGHTS

The FORTRAN available on the CYBER 205 has been augmented with a num-
ber of functions to permit explicit manipulation of vectors. These allow the
programmer to specify vector computations which would not ordinarily be
recognized as such, even by an optimizing compiler. However, vectorization and, in
particular, use of the augmented FORTRAN requires that programs be designed to
take advantage of these capabilities.

We briefly summarize the vector notation. Vectors are similar to, but not exactly
the same as, l-dimensional arrays. A vector is designated by specifying its starting
point and its length. Thus, if Z(l; 10) is the vector which corresponds to the entire
lo-element array 4 Z(3; 5) is a vector consisting of elements three to seven of Zj and
M(2, 3; 3) is the vector of elements (M(2, 3), M(3, 3), M(4,3)). Vectors can be
referred to either explicitly, as in these examples, or by assigning a “designator” to
the vector. Designators are vector variables which are assigned to specific vectors
using an ASSIGN command. The statement

ASSIGN DES, Z(4; 2)

assigns the designator name DES to the vector [Z(4), Z(5)]. Both notations are
used in the examples in this section.

Procedures for vectorization were applied in three segments of the code: (1) iden-
tifying particle neighbors to create the list; (2) sorting by X, Y, and Z coordinates;
(3) calculating the accelerations. In some cases, the original algorithm required
significant restructuring in order to apply vector functions. Timings for each
segment before and after vectorization are shown in the table below. Times are for
the 3-dimensional case with n = 1000 and R = 1.5: These timings indicate that an
order of magnitude improvement is achievable with explicit vectorization. (See
Table I.)

A. Neighbor Lists

Vectorization of the algorithm for finding neighbors concentrated on the
procedures for determining the intersection of the X, Y, and Z ranges of each par-
ticle. It is based on two vector functions: (“gather”) QSVGATHR and (“compress”)
QSVCMPRS. The “gather” function specifies that a vector is to be tilled with values
from a second vector, and the values in the new vector are to be arranged according
to an index contained in a third vector. Thus. the statement

U = QEIVGATHR(V, I; U)

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 145

TABLE I

CYBER 205 Timings

Execution time/Time steps (s)

Program segment Scalar version Vector version

Neighbor table update
Sorting
Acceleration calculation

Total tlme/tlme step
With neighbor table update
Without neighbor table update

0.98 0.07
0.06 0.01
0.22 0.04

1.29 0.14
0.31 0.07

assigns values to sequential locations in vector U from locations in vector V. Index
I indicates the locations in V from which values are taken so that the effect is the
assignement U(J) = V(I(J)). For example, for

v= [l.O, 3.4, 7.1, 9.51

I= [3, 1, 1,2]

U will be assigned the values

u= [7.1, 1.0, 1.0, 3.41.

The “compress” function is similar to “gather” except that the index vector 1 is
replaced by a bit array B. In this case, U is assigned from the values of V for which
the corresponding entry in B is “1.” (See Fig. 5.)

Finding neighbors of a particle i consists of a series of “compress” and “gather”
functions using arrays LOCX, LOCY, and LOCZ, and ranks RGY and RGZ. The

I Y u B Y U

U = QSVCMPRSb’,B;U)

FIG. 5. “Gather” and “compress.”

146 SULLIVAN, MOUNTAIN, AND O’CONNELL

process begins by setting a bit vector BT from the X-indices JBS, and JES,. The
statements

N = (number of particles)
BT(l:N)=B’O’
JBU = JBS(1)
JEU = JES(1)
LN=JEU-JBU+l
BT(1: LN) = LOCX(JBU; LN).NE.I

set BT, to 1 for JBS,<j< JES, and LOCXj # i, and “0” otherwise. If the interval
[JBU, JEU] crosses a periodic boundary, we have JEU < JBU, so that the test
becomes

BT(1; JEU) = LOCX(1; JEU).NE.I
LN=N-JBU+l
BT(JBU; LN) = LOCX(JBU; LN).NE.I.

X-neighbors of particle i are placed in a list designated DNBRX using a “compress”
from LOCX according to BT:

DNBRX = Q8VCMPRS (LOCX(1; N) JBT; DNBRX).

Y-locations of the X-neighbors are obtained using a “gather” from RGY according
to DNBRX:

DLNBR = Q8VGATHR (RGY(1; N), DNBRX; DLNBR).

Now DLNBR contains a list of the Y-rankings of the X-neighbors. These rankings
are compared with the Y-indices for particle i, KBS,, a,nd KES,, and the bit vector
BT is set to reflect the results of these tests:

NNX = (number of X-neighbors)
KBU = KBS(1)
KEU = KES(1)
BT(1; NNX) = (KBU.LE.DLNBR).AND.(KEU.GE.DLNBR).

For the periodic boundary condition with KBU > KEU, the test becomes

BT(l; NNX) = (KBU.LE.DLNBR).OR.(KEU.GE.DLNBR).

X-Y neighbors of particle i are obtained with a “compress” from DNBRX, the X-
neighbors, into DNBRXY according to BT. Proceeding in a similar manner, a
second “gather” from RGZ to DLNBR according to DNBRXY gives the Z-

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 147

rankings of the X-Y neighbors. These are compared with Z-indices for particle i,
MBS,, and MES,, and BT is set to reflect the results. Tbe final ‘“compress” from

NBRXY according to BT yields the list of particles in the set

[JIB,, JES,] n [KBS,, KES,] n [MBS,, MES,].

The timings labeled “neighbor table update” include the time to find the intersec-
tion and to enter the neighbors in the output table, but do not include sorting time
or time to determine the arrays of indices. Thus, these timings reflect precisely the
effect of the modification described.

B. Sorting

The “smoothsort” algorithm is based on sequential procedures and cannot be
restructed to take advantage of parallelism. Consequently, a different sorting
algorithm, the Batcher sort, was selected for the vectorized implementation. The
Batcher sort is similar to “Diamondsort” [4]. It uses operations which are highly
compatible with parallel computation techniques and are relatively straightforward
to implement with vector FORTRAN.

C. Acceleration Calculation

The last segment to which vectorization was applied is the acceleration com-
putation. The acceleration algorithm uses a table look-up and an interpolation
procedure to determine acceleration as a function of the distance between particles.

Implementation of the algorithm for acceleration with vector arithmetic requires
modification of two data structures. First, rather than string them in a l-dimen-
sional array, the lists of neighbors are described by a 2-dimensional table in which
the neighbors of particle i are listed in row i. Since every particle has at least some
neighbors, the initial columns of the neighbor list will contain entries for every par-
ticle. Thus, the vector computation can be implemented via column-wise
operations. Incremental acceleration is calculated in parallel for each particle with
respect to the neighbors in a single column of the neighbor list. Corrections for the
final “incomplete” columns are done in scalar mode.

In the scalar code, the periodic boundary conditions must be queried each time a
distance between two particles is calculated. The resulting conditionals make
implementation of the distance calculations with vector arithmetic awkward, if not
impossible. In our alternative method, six additional arrays store the status of each
particle with respect to the boundary conditions. The contents of these arrays are
updated in the neighbor algorithm as it determines the indices (JBS, JES, etc.) par-
ticle. In fact, these arrays are obtained merely by saving values of the terms ADDX,
etc., which are mentioned in Section 2. As a result, the first part of the neighbor
algorithm (sorting and updating boundary conditions) is executed at each time
step, even though it may not be necessary to construct a new neighbor list. Values

148 SULLIVAN, MOUNTAIN, AND O’CONNELL

in the six arrays are 0 or 1, depending on whether the corresponding particle has
neighbors which result from the periodic boundaries. Thus

XA,=l if some of the neighbors of particle i
in the positive direction lie across
the periodic boundary,

=o otherwise

and similarly,

x3,= 1 if some of the neighbors of particle i
in the negative direction lie
across the periodic boundary,

=o otherwise

(see Fig. 6).
In computing distances between particles, XA, = 1 and XS, = 1 for particles i and

j implies that 1 must be added to the difference X, -Xi to account for the boundary
condition. Similarly, XS, = 1 and XA, = 1 implies that 1 must be subtracted from
the difference. It is assumed that R is small enough that XA, and X5’, cannot
simultaneously be 1 so that the X-, Y-, and Z-distances between particles i and j
can be computed using the formulas

(X,-X,)+(XS,,XA,-XA;Xs,)

(Yi- Y,)+(YS; YA,- YA,. YS,)

(2, - 2,) + (ZS, . ZA,- ZA, . ZSJ.

This eliminates the need for conditional statements in the distance calculation. As
we mentioned, incremental acceleration is calculated for each particle with respect
to the neighbors in a single column of the neighbor table. X, Y, Z distance com-
ponents are computed as above, using a series of “gather” statements for indirect
addressing from a single column of the neighbor table. This is done by using the

I I
XAi’0.0

XS~‘l.0 i

“1 XA, = 1.0

R+6
xs, = 0.0

I I

FIG. 6. Recording boundary conditions.

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 149

current column of the neighbor list as the index, and then storing the result in a
temporary vector XT (see Fig. 7).

Similarly, parameter values for the neighbors are gathered from XA and from X5’
and stored in temporary vectors. Element-by-element multiplications, additions,
and subtractions can then be performed using vector arithmetic statements to eom-
pute the X, Y, and 2 distance components from each particle to the neighbor in the
kth column of the neighbor list.

The table look-up procedure used for the force is somewhat awkward to
implement with vector statements. It can be accomplished by means of “compress,”
“gather,” and “expand” functions. The “expand’ function is the inverse of “com-
press,” depositing data from one array into a larger array according to a bit vector
index. The table look-up is done by compressing the list of indices which point into
the table (to eliminate 0 indices), gathering values from the table according to the
compressed index, and then expanding into the appropriate locations of a working
array. Since vectorization calculations are invoked only where all entries in a
column of the neighbor table are non-zero, the effectiveness of vectorization is
dependent on the current composition of the neighbor list and varies somewhat as
the neighbor list is rebuilt.

4. OTHER METHODS

In this section we discuss briefly some alternate methods for building the table of
neighbors. We have tested several of these and the others have been treated in the
literature. None of the methods are obviously vectorizable, but all of them have
interesting aspects.

A. Radix Sorting

For each particle we first compute integer coordinates,

and then do a radix sort on these coordinates. That is, we put elements in “‘buckets”

Neighbor

X XT

FIG. 7. Column-wise calculation of forces.

150 SULLIVAN, MOUNTAIN, AND O’CONNELL

P+l,Q-I P+l,Q P+l,Q+l
1

!=i+6

P,Q-1 P.0 P,Q+l

P-l ,0-l P- 1 ,Q P-l ,Q+l

FIG. 8. P, Q stencil.

according to the S value; gather up in the S-bucket order; put in buckets according
to the Q value; gather up in the Q order, etc. The object is to associate each particle
with its rank in the (P, Q, S) ordering of cells.

In two dimensions we can think of the P, Q indices as associated with a “stencil”
of lines (see Fig. 8). A particle in cell P, Q has possible neighbors in that cell and in
the eight cells in the stencil touching it.

From the stencil we get a table of neighbors by working with the cell indices to
search contiguous cells. Pointers keep track of the cell boundaries. One way to do
to this is to use a pointer to the blocks of indices for cells contiguous to the P, Q
cell containing particle i so that for particles with cell coordinates P, Q, one needs
to search the 9-cell stencil, while keeping track of list boundaries using the set of
nine moving pointers. As usual, some bookkeeping is necessary for cells on the
boundary.

In the 3-dimensional case one must search a 27-cell stencil for each particle. For
“medium sized” problems this a major drawback because, although the radix sort
has time complexity O(n), we must do a “local” O(n*) search of the stencil. The cost
of this search again depends on how R varies as a function of ~1. Also, the
bookkeeping for the periodic boundary conditions increases in the 3-dimensional
case. It is likely, nevertheless, that radix sorting can be quite efficient for very large
problems, especially if it is combined with some method for “automatically” deter-
mining when a cell boundary has been crossed. If position coordinates are com-
puted in fixed point, for example, boundary crossings can be indicated by the
changing of a digit in the coordinate value. It is also possible to use much smaller

t
Y

FIG. 9. The algonthm for the method of shadow.

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 151

cells to refine the (R + 6) x (R + 6) cell, and then keep track of the stencil by a
method similar to that used to find the boundaries JBS,, JES,, etc., in the method
of lights. This avoids searching neighboring cells because we can merely store an
entire (R-I- 6) x (R + 6) cell as in the method of lights.

Hackney and Eastwood [6] describe a related method which uses linked lists to
chain together particles in each of the radix cells. In this way sorting is avoided and
pointers to call boundaries are not needed. However, there is some overhead
associated with the linked lists, and the use of indirect addressing probably rules
out vectorization of this algorithm. Rabin [9] uses a mesh of cells of side
2 x (R + 6) to replace the search of neighboring cells with merges.

B. The Method of “Shadows”

This method was inspired by work of Hopcroft, Schwartz and Sharir [7]. In the
2-dimensional case we first sort the particles in Y order. If we are considering, say,
particle i, the shadow of i consists of all those j with Y, < Y, and IX, - X,/ < R + 6.
Among these js, those with Y, - Y, < R + 6 are neighbors of i and all others can be
discarded. That is, any j such that R + 6 + Yj < Y, cannot possibly be a neighbor of
a particle with a larger Y coordinate than Y,. On the other hand, particle i itself
might be a neighbor of particles with larger Y coordinates. Hence, the index i must
be saved.

A data structure for dynamic storage allocation efficiently implements the saving
and discarding of particles during the Y order search. Since it will have to be
repeatedly searched for shadows of succeeding particles, the data structure should
be amenable to this range searching. Several such data structures are discussed by
Bentley and Friedman [3].

We have used 2:3 trees in tests. These are trees such that every internal node has
either two or three descendants and all leaves have the same depth. We assume that
the data are stored at the leaves sorted in X-coordinate order from left to right.
Internal nodes contain information on the range of their descendants. For instance,
two integers (L, M) can be used to indicate the largest element to be found on the
left and middle subtrees, respectively. This is enough information to guide the
search down the tree. Nodes are added and discarded using an “adopting and split-
ting” algorithm which is discussed in [l] (see Fig. 9).

st: collect from T all X neighbors of particle i
ifin Y range of i
then

add to i-neighbor queue
else

delete from the tree T
endif

add particle i to the tree T
i +- next particle in Y order
go to st

581/61/l-11

152 SULLIVAN, MOUNTAIN, AND O’CONNELL

Cr11 CT21 [T31

FIG. 10. Range search on the tree T.

In the range search the 2 : 3 tree is used as follows: The X range of particle i can
be thought of as an interval of X values 9, positioned at the top of the tree T,
which also represents an interval. The interval 4 must pass down the tree splitting
into disjoint subintervals which in turn generate two or three more intervals, even-
tually stopping at nodes whose descendants are the X-neighbors of i. Given 9 and
T, the general step is:

If 9 c T, pass down one level by generating new intervals from the sons of T;
If 5 = T, collect all descendants of C
If JJ n T= 4, discard this branch in the search.

(see Fig. 10.)
For simulations using a few hundred particles, this method is somewhat slower

than the method of lights. The difference in time is probably due to the extra
overhead involved in handling the tree. On the other hand, for larger simulations
on scalar machines the method of shadows may be attractive because the ongoing
deletion of nodes prevents the search tree T from growing too large.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. D. BEEMAN, J. Comput. Phys. 20 (1976), 130.
3. J. L. BENTLEY AND J. H. FRIEDMAN, Comput. Surv. ZZ 4 (1979).
4. H. BROCK, B. BROOKS, AND F. SULLIVAN, BIT 21 (1981), 2.
5. E. DIJKSTRA, Sci. Comput. Programming 1 (1982).
6. R. HOCKNEY AND J. W. EASTWOOD, “Computer Simulation Using Particles,” McGraw-Hill, New

York, 1981.

MOLECULAR DYNAMICS ON VECTOR COMPUTERS 153

7. J. E. HOPCROFT, J. T. SCHWARTZ, AND M. SHARIR, “Efficient Detection of Intersections Among
Spheres,” in press.

8. B. MOSSBERG, in “Symposium on Cyber 205 Applications,” Colorado State Univ. Fort Colhns,
Cola., 1982.

9. M. haIN, “Algorithms and Complexity,” Academic Press, New York, 1976.
IO. P. SCHOFIELD, Comput. Phys. Commun. 5 (1973), 17.
11. L. VERLET, Phys. Rev. 159 (1967), 98.

